當前位置:首頁>研究成果

Retinoic acid signaling and neurogenic niche regulation in the developing peripheral nervous system of the cephalochordate amphioxus

Cellular and Molecular Life Sciences (2018) 75:2407–2429

https://link.springer.com/article/10.1007%2Fs00018-017-2734-3

The retinoic acid (RA) signaling pathway regulates axial patterning and neurogenesis in the developing central nervous system (CNS) of chordates, but little is known about its roles during peripheral nervous system (PNS) formation and about how these roles might have evolved. This study assesses the requirement of RA signaling for establishing a functional PNS in the cephalochordate amphioxus, the best available stand-in for the ancestral chordate condition. Pharmacological manipulation of RA signaling levels during embryogenesis reduces the ability of amphioxus larvae to respond to sensory stimulation and alters the number and distribution of ectodermal sensory neurons (ESNs) in a stage- and context-dependent manner. Using gene expression assays combined with immunohistochemistry, we show that this is because RA signaling specifically acts on a small population of soxb1c-expressing ESN progenitors, which form a neurogenic niche in the trunk ectoderm, to modulate ESN production during elongation of the larval body. Our findings reveal an important role for RA signaling in regulating neurogenic niche activity in the larval amphioxus PNS. Although only few studies have addressed this issue so far, comparable RA signaling functions have been reported for neurogenic niches in the CNS and in certain neurogenic placode derivatives of vertebrates. Accordingly, the here-described mechanism is likely a conserved feature of chordate embryonic and adult neural development.
 

 


115台北市南港區研究院路二段128號  Tel: 02-27899515   Fax: 02-27858059  *個人隱私權聲明*
icob@gate.sinica.edu.tw  Copyright © ICOB 2013. All rights reserved. 最佳瀏覽網頁方式請用最新版IE11或其他瀏覽器 -- 瀏覽人數:1324217
115台北市南港區研究院路二段128號
Tel: 02-27899515
Fax: 02-27858059
icob@gate.sinica.edu.tw
Copyright © ICOB 2013. All rights reserved. 最佳瀏覽網頁方式請用最新版IE11或其他瀏覽器 /瀏覽人數:1324217--
 瀏覽人數:1324217