跳到主要內容區塊

研究人員|中央研究院 細胞與個體生物學研究所

研究人員
:::
側邊選單開關 研究人員
:::

黃聲蘋 老師 實驗室

  • 黃聲蘋Sheng-Ping L. Hwang
    退休人員Emeritus Faculty
    • 專長:Molecular Biology, Gene Regulation, Developmental Biology
    • 信箱:zoslh@gate.sinica.edu.tw
    • 電話:02-2789-9554
    • 位置:R604/ICOB
實驗室簡介展開收合
實驗室成員

以斑馬魚為模式生物來探討胚胎發育過程中不同器官中細胞分化的調控機制。

當瞭解了器官中細胞分化時參與的訊息傳導及基因調節網路後,將能提供重要的資訊來輔助人類人工誘導多能幹細胞、類器官培育及再生等研究且與人類疾病治療如發炎性腸炎相關。

(1) 腸道細胞分化調控的分子機制: 我們的研究顯示斑馬魚agr2 表現在大部分具有黏液分泌的器官中包括表皮、耳囊、咽喉、食道與腸道。Agr2 專一性的表現在腸道杯狀細胞中並調節這些細胞的末端分化。此外,Foxa2及Hif1ab轉錄因子會結合在 agr2基因上游的特定DNA序列,來調控 agr2 表現在腸道杯狀細胞中來促進杯狀細胞的末端分化。研究發現斑馬魚Cdx1b其為哺乳類Cdx2相似蛋白,在胚胎後期不同腸道細胞如杯狀細胞、腸道內分泌細胞及吸收型細胞的分化及腸道細胞增生擔任重要的功能。而斑馬魚轉錄因子 Krüppel-like factor 4 (Klf4)會抑制腸道細胞增生且調控腸道杯狀細胞分化。同時Klf4參與了Notch訊息傳遞對於腸道杯狀細胞分化的調節。

(2) 斑馬魚Cdx1b在內胚層形成與上丘腦不對稱發育所擔任的新穎角色: 母體的Cdx1b蛋白質會藉由調控Nodal訊息傳遞過程中的轉錄因子(foxa2, gata5)的表現來調控斑馬魚內胚層的形成,也因此當缺乏cdx1b 時會造成肝、胰臟及腸道發育不全。由CRISPR-Cas9基因編輯所產生的 (MZ)cdx1b-/ - 突變魚研究發現,Cdx1b會在胚胎分節時期,藉由調控ndr2與lft1在背側間腦的表現來控制上丘腦不對稱發育。

(3) 表皮細胞分化調控的分子機制: 我們發現斑馬魚Klf4在表皮離子細胞擔任新穎的角色。一方面,Klf4能藉由抑制p53的表現而阻止cdkn1a/p21被誘發來促進表皮幹細胞的增生。另一方面,Klf4能藉由抑制dlc的表現與調節側面抑制,來控制表皮離子前驅細胞的群數。在對兩群斑馬魚表皮黏液細胞發育的研究中,我們提出了一個模式來描繪斑馬魚胚胎中離子細胞/角質細胞與表現agr2的表皮黏液細胞/表現pvalb8的表皮黏液細胞其順序命運的指定之時間軸: 之前已知有關離子細胞/角質細胞命運的指定是經由Dlc介導的Notch1a/3側面抑制且發生在晚期原腸時期;表現agr2的表皮黏液細胞命運的指定是經由Dlc及Jag1a/1b/2a 介導的Notch1a/3訊息傳遞,而表現pvalb8的表皮黏液細胞命運的指定則是經由Jag1a/Jag1b/Jag2a介導的Notch1a訊息傳遞且發生在分節時期。

(4)心臟型態形成的分子機制: 我們利用 BMP4 心臟專一的啟動子及其上游調控序列,製備一Tg(BMP4:EGFP)as1 基因轉殖魚,其胚胎具有表現綠色螢光蛋白在心室及心房的心肌內。利用此基因轉殖魚進行ENU化學突變所製備的一個S1pr2as10突變魚 ,其心臟前驅細胞移動有缺陷而造成兩個心臟的形成。我們發現當培養此突變魚胚胎於低溫下會拯救其兩個心臟的缺陷,並發現低溫會誘導過氧物的產生,續而調控細胞間質基因如fibronectin 1、tenascin-c及tenascin-w 的表現來促進心臟前驅細胞的正常移動。利用基因補捉所產生的VCAP1X2/icam3突變魚,研究發現VCAP1X2/Icam3是一個表現在心肌細胞膜的細胞附著蛋白,擔負著調節由心肌細胞膜經由肌節到細胞核重要的訊息傳導功能。VCAP1X2/Icam3 能藉由調控pAKT、pERK與smyd1b的表現,來維持心臟的收縮力與心肌細胞及心外皮細胞的增生。

著作展開收合
  1. Yu, H-L and Hwang, S-P.L.*(2022). Zebrafish integrin a3b is required for cardiac contractility and cardiomyocyte proliferation. Biochem. Biophys. Res. Commun. 595: 89-95.
  2. Lu, Y-F., Liu, D-W., Li, I-C., Lin, J., Wang, C-M., Chu, K-C., Kuo, H-H., Lin, C-Y., Yih, L-H., Jiang, Y-J.*, Hwang, S-P.L.*(2021). Delta/Jagged-mediated Notch signaling induces the differentiation of agr2-positive epidermal mucous cells in zebrafish embryos. PLOS Genet 17(12): e1009969.
  3. Wu, C-S., Lu, Y-F., Hwang, S-P. L.* (2021) Zebrafish Cdx1b modulates epithalamic asymmetry by regulating ndr2 and lft1 expression. Dev. Biol. 470: 21-36.
  4. Liu, Y-H., Lin, T-C., Hwang, S-P. L.* (2020) Zebrafish Pax1a and Pax1b are required for pharyngeal pouch morphogenesis and ceratobranchial cartilage development. Mech. Dev. 161: 103598.
  5. Chen, Y-C., Liao, B-K., Lu, Y-F., Liu, Y-H., Hsieh, F-C., Hwang, P-P., Hwang, S-P. L.* (2019). Zebrafish Klf4 maintains the ionocyte progenitor population by regulating epidermal stem cell proliferation and lateral inhibition. PLOS Genet 15(4): e1008058.
  6. Hsieh, F-C., Lu, Y-F., Liau, I., Chen, C-C., Cheng, C-M., Hsiao, C-D., Hwang, S-P. L.* (2018). Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells. Sci. Rep. 8: 7856.
  7. Lin, C-Y., Tsai, M-Y., Liu, Y-H., Lu, Y-F., Chen, Y-C., Lai, Y-R., Liao, H-C., Lien, H-W., Yang, C-H., Huang, C-J., Hwang, S-P. L.* (2017). Klf8 regulates left-right asymmetric patterning through modulation of Kupffer’s vesicle morphogenesis and spaw expression. J. Biomed. Sci. 24: 45.
  8. You, M-S*., Jiang, Y-J., Yuh, C-H., Wang, C-M., Tang, C-H., Chuang, Y-J., Lin, B-H., Wu, J-L., Hwang, S-P. L.* (2016). A sketch of the Taiwan Zebrafish Core Facility. Zebrafish Suppl 1: S24-29.
  9. Lai, Y-R., Lu, Y-F., Lien, H-W. Huang, C-J. Hwang, S-P. L.* (2016). Foxa2 and Hif1ab regulate maturation of intestinal goblet cells by modulating agr2 expression in zebrafish embryos. Biochem. J. 473: 2205-2218.
  10. Tsai, M-Y., Lu, Y-F., Liu, Y-H., Lien, H-W., Huang, C-J., Wu, J-L., Hwang, S-P. L.* (2015). Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development. Dev. Neurobiol. 75: 908–926.
  11. Tang, C-H., Lai, Y-R., Li, C-H., Chen, Y-C, Lu, Y-U., Chen, H-Y., Lien, H-W., Yang, C-H., Huang, C-J., Wang, C-Y., Kao, C-F., Hwang, S-P. L.* (2014). Expression of zebrafish anterior gradient 2 in the semicircular canals and supporting cells of otic vesicle sensory patches is regulated by Sox10. Biochim. Biophys. Acta 1839: 425-437.
  12. Lin, C-Y., Huang, C-C., Wang, W-D., Hsiao, C-D., Cheng, C-F., Wu, Y-T., Lu, Y-F., Hwang, S-P. L.* (2013). Low temperature mitigates cardia bifida in zebrafish embryos. PLOS ONE 8(7): e69788.
  13. Chen, Y-C., Lu, Y-F., Li, I-C., Hwang, S-P.L.* (2012). Zebrafish Agr2 is required for terminal differentiation of intestinal goblet cells. PLOS ONE 7(4): e34408.
  14. Li, I-C., Chan, C-T., Lu, YF., Wu, Y-T., Chen, YC., Li, G-B., Lin, C-Y., Hwang, S-P.L.* (2011). Zebrafish Krüppel-like factor 4a represses intestinal cell proliferation and promotes differentiation of intestinal cell lineages. PLOS ONE 6(6): e20974.
  15. Wu, Y-T., Lin, C-Y., Tsai, M-Y., Chen, Y-H., Lu, Y-F., Huang, C-J., Cheng, C-M., Hwang, S-P.L.* (2011). β-Lapachone induces heart morphogenetic and functional defects by promoting the death of erythrocytes and the endocardium in zebrafish embryos. J. Biomed. Sci. 18:70.
  16. Chen, Y-H., Lu, Y-F., Ko, T-Y., Tsai, M-Y., Lin, C-Y., Lin, C-C., and Hwang, S-P. L.* (2009). Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Dev. Dyn. 238:1021-1032.
  17. Cheng, P-Y., Lin, C-C., Wu, C-S., Lu, Y-F., Lin, C Y., Chung, C-C., Chu, C-Y., Huang, C-J., Tsai, C-Y., Korzh, S., Wu, J-L., and Hwang, S-P.L.* (2008). Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation. Development 135: 941-952.
  18. Shih, L. J., Lu, Y. F., Chen, Y. H., Lin, C. C., Chen, J. A., and Hwang, S-P.L.* (2007). Characterization of the agr2 gene, a homologue of X. laevis anterior gradient 2, from the zebrafish, Danio rerio. Gene Expr Patterns 7:452-460.
  19. Wang, W. D., Huang, C. J., Lu, Y. F., Hsin, J. P. Prabhakar, V. R. Cheng, C. F., and Hwang, S-P.L.* (2006). Heart-targeted overexpression of Nip3a in zebrafish embryos causes abnormal heart development and cardiac dysfunction. Biochem. Biophys. Res. Commun. 347: 979-987.
  20. Shentu, H., Wen, H-J., Her, G-M., Huang, C-J., Wu, J-L., and Hwang, S-P.L.* (2003). Proximal upstream region of zebrafish bone morphogenetic protein 4 promoter directs heart expression of green fluorescent protein. Genesis 37: 103-112.
  21. Shih, L.-J., Chen, C.A., Chen, C.-P., and Hwang, S.-P.L.* (2002). Identification and characterization of bone morphogenetic protein 2/4 from the starfish Archaster typicus. Compar. Biochem. Physiol. Part B 131: 143-151.
  22. Shih, L.-J., Tsay, H.-J., Lin, S.-C., and Hwang, S.-P.L.* (2001). Expression of zebrafish hoxa1a in neuronal cells of the midbrain and anterior hindbrain. Mech. Dev. 101: 279-281.
  23. Hwang, S.-P.L.*, Chen, C. A., and Chen, C.-P. (1999). Sea urchin TgBMP2/4 gene encoding a bone morphogenetic protein closely related to vertebrate BMP2 and BMP4 with maximal expression at the later stages of embryonic development. Biochem. Biophys. Res. Commun. 258: 457-463.
  24. Hwang, S-P.L.*, Tsou, M-F., Lin, Y-C., and Liu, C-H. (1997). The zebrafish BMP4 gene: Sequence analysis and expression pattern during embryonic development. DNA Cell Biol. 16(8):1003-1011.