跳到主要內容區塊

研究人員|中央研究院 細胞與個體生物學研究所

研究人員
:::
側邊選單開關 研究人員
:::

文章內容區

  • 蘇怡璇Yi-Hsien Su 蘇怡璇老師 Research ID 蘇怡璇老師 ORCID
    研究員Research Fellow
    • 專長:Developmental Biology, Gene Regulatory Networks, Systems Biology
    • 信箱:yhsu@gate.sinica.edu.tw
    • 電話:02-2789-9511
    • 網站: 蘇怡璇老師實驗室
    • 位置:R410/ICOB
經歷簡介展開收合
2022
Research Fellow, Institute of Cellular and Organismic Biology, Academia Sinica
2016-2022
Associate Research Fellow, Institute of Cellular and Organismic Biology, Academia Sinica
2007-2016
Assistant Research Fellow, Institute of Cellular and Organismic Biology, Academia Sinica
2005-2007
Postdoctoral Research Fellow, Division of Biology, California Institute of Technology, USA
2005
Ph.D., Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, USA
研究方向展開收合

地球上各種型態迥異的動物如何產生一直是生物學上的一大謎團。發育生物學家研究基因調控網路如何控制身體體制的發育過程,演化發育生物學家則是藉由比較數個現生物種的發育機制來探究這個問題。綜合這些演化發育生物學的研究方法,科學家能夠重建祖先的可能樣態,並推演出現生動物發育機制及基因調控網路有別於祖先的改變。研究這些變化能使我們了解不同的身體形態如何經由演化而產生。以人類所屬的脊索動物門為例,所有的脊索動物都具有能定義此動物門的特徵,例如中空的神經管和脊索。與脊索動物門親緣關係最接近的兩個動物門是棘皮動物門和半索動物門,兩者合稱為步帶動物。這兩類動物缺乏脊索動物的特徵,並各自演化出能定義牠們動物門的獨特身體體制。這三個動物門同屬於後口動物,是兩側對稱動物的兩大分支之ㄧ。我們實驗室研究海膽(屬於棘皮動物)及玉柱蟲(屬於半索動物)的發育機制,以重建步帶動物和後口動物的祖先樣態,並探究定義這些動物門的特徵如何起源自共同祖先。我們的研究成果能對後口動物的演化以及新型態的產生提供分子機制層面的了解。

代表著作展開收合
  1. Fan, TP, Lee, JR, Lin, CY, Chen, YC, Cutting, AE, Cameron, RA, Yu, JK, Su, YH* (2025) Deep homology of a brachyury cis-regulatory syntax and the evolutionary origin of the notochord, Science Advances, 11, eadw3307.
  2. Pérez-Posada, A*, Lin, CY, Fan, TP, Lin, CY, Chen, YC, Gómez-Skarmeta, JL, Yu, JK, Su, YH*, Tena, JJ* (2024) Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes, Nature Ecology & Evolution, 8: 2213-2227.
  3. Lin, CY, Marlétaz, F, Pérez-Posada, A, Martínez García, PM, Schloissnig, S, Peluso, P, Conception, GT, Bump, P, Chen, YC, Chou, C, Lin, CY, Fan, TP, Tsai, CT, Gómez Skarmeta, JL, Tena, JJ, Lowe, CJ, Rank, DR, Rokhsar, DS*, Yu, JK*, Su, YH* (2024) Chromosome-level genome assemblies of 2 hemichordates provide new insights into deuterostome origin and chromosome evolution, PLOS Biology, 22(6): e3002661.
  4. Chou, C, Lin, CY, Lin, CY, Wang, A, Fan, TP, Wang, KT, Yu, JK, Su, YH* (2024) Tracing the evolutionary origin of chordate somites in the hemichordate Ptychodera flava, Integrative & Comparative Biology, 64: 1226-1242.
  5. Chang, WL and Su, YH* (2022) Zygotic hypoxia-inducible factor alpha regulates spicule elongation in the sea urchin embryo, Developmental Biology, 484: 63-74.
  6. Lin, CY, Yu, JK*, and Su, YH* (2021) Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate, Evolution & Development, 23: 28-45.
  7. Su, YH*, Chen, YC, Ting, HC, Fan, TP, Lin, CY, Wang, KT, and Yu, JK* (2019) BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insights into a possible origin of chordates. Proceedings of the National Academy of Sciences of the United States of America, 116: 12925-12932.
  8. Chang, WL#, Chang, YC#, Lin, KT, Li, HR, Pai, CY, Chen, JH, and Su, YH* (2017) Asymmetric distribution of hypoxia-inducible factor α regulates dorsoventral axis in the early sea urchin embryo. Development, 144: 2940-2950 (#contributed equally; cover and feature article).
  9. Lin, CY and Su, YH* (2016) Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Developmental Biology, 409: 420-428.
  10. Luo YJ and Su YH* (2012) Opposing Nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biology, 10(10): e1001402.